Jumat, 11 Maret 2016

Persamaan Lingkaran

A. Persamaan Lingkaran yang berpusat di O (0, 0) dan berjari-jari r.

         
Dari gambar, diperoleh persamaan : OP = r

Sehingga diperoleh persamaan lingkaran dengan pusat di O dan berjari-jari r , yaitu :

Suatu titik A dikatakan :
a. Terletak pada lingkaran 
b. Terletak di dalam lingkaran
c. Terletak di luar lingkaran

B. Persamaan Lingkaran yang berpusat di P (a, b) dan berjari-jari r.

Gambar di atas adalah sebuah lingkaran dengan pusat (a, b) dan berjari-jari r. Titik Q (x, y) adalah sebuah titik pada lingkaran.

Dari gambar diperoleh persamaan : PQ = r


Sehingga diperoleh persamaan lingkaran dengan pusat di P (a, b) dan berjari-jari r, yaitu :
Suatu titik A dikatakan :
a. Terletak pada lingkaran
b. Terletak di dalam lingkaran
c. Terletak di luar lingkaran

 C. Persamaan Umum Lingkaran
Bila kita menjabarkan persamaan :

Dan mengatur kembali suku-sukunya, maka akan diperoleh :

Persamaan terakhir dapat pula dinyatakan dengan :

Dengan :


Persamaan (3) merupakan persamaan lingkaran dengan pusat di dan
berjari-jari
 

D. Persamaan garis singgung lingkaran
1. Garis singgung lingkaran melalui sebuah titik lingkaran
* Garis singgung lingkaran melalui sebuah titik pada lingkaran ditentukan dengan rumus

* Persamaan garis singgung melaui titik P pada lingkaran
dinyatakan dengan rumus :

*Persamaan garis singgung melaui titik P pada lingkaran dinyatakan dengan rumus :

2. Garis singgung dengan gradien yang diketahui.
* Jika garis y = mx + n menyinggung lingkaran , maka persamaan garis singgungnya adalah : * Jika garis y = mx + n menyinggung lingkaran
Maka persamaan garis singgungnya :

3. Garis singgung melalui sebuah titik diluar lingkaran
Dari suatu titik P yang terletak di luar garis lingkaran dapat dibentuk dua garis singgung.
Persamaan umum garis singgung lingkaran melalui sebuah titik P terletak di luar garis lingkaran adalah :
Langkah menentukan gradien ( m ) untuk persamaan (10) adalah sebagai berikut :

1. Substitusikan persamaan ke persamaan lingkaran sehingga
    diperoleh suatu persamaan kuadrat.

2. Dengan mengambil nilai D=0 , maka dipetoleh nilai m.


Sumber :  www.rumus.web.id

0 komentar:

Posting Komentar